SA367 · Mathematical Models for Decision Making

Spring 2022 - Uhan

Quiz 7 - 3/24/2022

Instructions. You have 15 minutes to complete this quiz. You may <u>not</u> use any other materials (e.g., notes, homework, website).

Show all your work. To receive full credit, your solutions must be completely correct, sufficiently justified, and easy to follow.

Problem 1a	Weight	Score
1b	1	
1c	1	
1d	1	
Total		/ 40

Problem 1. Consider the following directed graph. The edge labels correspond to edge lengths.

Let f(i) be the length of a shortest path from node i to node 10 in the directed graph above.

Using the principle of optimality and recursion, we can solve for the values of f(i). Fill in the blanks below.

a.
$$f(10) =$$

b. $f(9) = \min \left\{ + f() \right\} =$
 $f(8) = 1$
 $f(7) = 1$
 $f(6) = 5$

c. $f(5) = \min \left\{ + f() \right\} + f()$
 $f(4) = 3$
 $f(3) = 8$
 $f(2) = 6$

d. $f(1) = \min \left\{ + f() \right\} + f()$

See Problem 1 in Lesson 10 for hints on how to approach this problem.